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At 4.2°K the R lines of chromium in ruby and in MgO exhibit an isotope shift of 0.13 and 0.17 cm -1 per 
unit mass, respectively. This is a much larger value than is found for free atoms of intermediate mass. We 
consider the possibility that this isotope shift is caused by the interaction of the ion with the vibrating lattice. 
The ion-phonon interaction causes a frequency shift in these R lines, and this shift depends on the amplitude 
of vibration of the chromium ion. The lighter chromium isotopes, however, have a larger amplitude of vibra
tion than the heavier isotopes, and consequently the frequency shift varies from isotope to isotope. This leads 
to an isotope shift. For the R lines of ruby and MgO :Cr3+ the isotope shift due to the interaction with the 
zero-point vibrations is calculated, and is in very good agreement with the experimental values, both in 
magnitude and direction. 

INTRODUCTION 

THE effects of vibrations of the host lattice on the 
sharp optical transitions of impurity ions in a 

crystal have been the subject of much recent investiga
tion. These effects include a shift and broadening of the 
lines with increasing temperature,1"3 the appearance of 
sidebands,4-7 and relaxation processes between adjacent 
levels of the impurity ions. The investigation of such 
effects may be a fruitful method of probing the vibra
tional spectrum of the host lattice. Indeed, many of the 
phenomena which are being considered for investigation 
by means of the Mossbauer effect can also be investi
gated by examining the details of the optical spectra of 
suitable impurity ions imbedded in the lattice.8 

The impurity ion, then, acts as a probe to detect the 
effect of the lattice vibrations. However, this ion is 
generally of different mass and is often bound by a dif
ferent coupling constant from the regular ions. We then 
detect not the vibrations of the regular host ions, but 
rather the vibrations being experienced by the impurity 
ion. Now the problem of the vibrations of a defect in 
an otherwise regular lattice has been the subject of 
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much theoretical interest.9 The defect caus.es a change in 
amplitude of the regular modes of vibration and there 
may be new modes localized around the defect. Many of 
these effects are susceptible to investigation through 
examination of sharp optical transitions emitted by the 
impurity ion. We show here how a consideration of 
the vibrations of the impurity ion can explain the iso
tope shift found in the sharp R lines of ruby10 and 
MgO:Cr3+. 

EXPERIMENTS AND RESULTS 

At 4.2°K the thermal broadening of the R lines is 
negligible and the width is determined by strains in the 
crystal. The crystal to be examined was placed in a 
Dewar containing liquid helium and positioned in front 
of a Jarrell-Ash 1.8-m Ebert recording spectrometer. 
The lines were measured in emission. An RCA-7102 or 
RCA-7265 photomultiplier, cooled by liquid nitrogen, 
was used as a detector. The fluorescence was excited 
either by a 1000-W water cooled mercury arc lamp or by 
the simultaneous use of several tungsten filament lamps. 
Dilute copper sulfate solution was used as a filter in 
both cases, as it transmits radiation in the region of the 
absorption bands of the samples investigated. 

The Ri line of ruby is a doublet whose components 
are separated by 0.38 cm"1. By careful control over the 
growing process, the strains can be reduced and this 
separation completely resolved. Close examination, 
however, reveals asymmetry in the shape of the indi
vidual components, Fig. 1. 

It was suspected that this asymmetry might be 

9 See, for example, A. A. Maradudin, E. W. Montroll, and G. H. 
Weiss, in Solid State Physics, edited by Seitz and D. Turnbull 
(Academic Press, Inc., New York, 1963), Suppl. 3, for references 
and historic survey to 1962. Further references are contained in 
A. A. Maradudin, Rev. Mod. Phys. 36, 417 (1964). 
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by J. R. Singer (Columbia University Press, New York, 1961), 
p. 50. 
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FIG. 1. The Ri line of ruby showing the two components caused 
by the ground-state splitting. The fine structure due to the chrom
ium isotopes is indicated. 

caused by isotope shift. The most abundant chromium 
isotopes are11: Cr50, 4.3%; Cr52, 83.8%; Cr53, 9.6%; and 
Cr54, 2.4%. The absence of Cr51 suggests that the hump 
on the long-wavelength side is due to Cr50. The asymme
try on the short-wavelength side would thus be attributed 
to Cr53 and Cr54. By such analysis the positions of the 
isotope lines were inferred and are indicated on Fig. 1. 

Crystals with separated chromium isotopes were 
grown by one of us (JPR) by a flux method described 
elsewhere,12 and the positions of the individual isotope 
lines were accurately measured. Good agreement was 
found with the positions inferred from the asymmetry in 
the crystals of normal isotopic abundance. 

Chromium ions at cubic sites in MgO fluoresce in a 
single R line. It is more difficult to obtain strain-free 
chromium doped MgO crystals and the line is broader 
than for ruby. The doping process itself may introduce 
strains, and empirically the sharpest lines are found in 
very lightly doped crystals. We obtained some large 
transparent crystals of MgO from the Norton Company. 
These are nominally undoped, but are found to contain 
a few chromium ions per million Mg2+ ions. We cut a 
rectangular prism from the most strain-free part of 
such a crystal for this investigation. 

The R line fluoresced weakly but the line had a narrow 
width of 0.23 ever1 at 4°K. Figure 2 shows a trace of 
the line. Once again the hump on the long-wavelength 
side would appear to be due to the Cr50 isotope. 4.3% of 
the intensity is subtracted off here, and what remains on 
the long-wavelength side of the peak is due only to 
Cr52. Since the Cr50 line is symmetric, the asymmetry on 
the short-wavelength side can now be separated. Its 
intensity is just what is expected from Cr53 and Cr54 in 
their natural abundance. Such an analysis is indicated 
on Fig. 2. 

11 American Institute of Physics Handbook (McGraw-Hill Book 
Company, Inc., New York, 1963), pp. 8-7. 

12 D. F. Nelson and J. P. Remeika, J. Appl. Phys. 35, 522 (1964). 

For ruby the measured value of the isotope shift is 
0.13 cm-1 per mass unit, and for MgO:Cr3+ it is 0.17 
cm-1 per mass unit. In both cases the lighter isotope 
lines are shifted to the -red. The pair lines of ruby also 
exhibit isotope shift of roughly the same value. The 
lines from noncubic chromium sites in MgO are not 
sharp enough, in any available samples, to permit reso
lution of the isotope shift. 

THEORETICAL 

We attribute an isotope shift to the following process. 
The mean-square displacement of the impurity ion due 
to the lattice vibrations is different from that of the 
regular ions. The extent of the impurity-ion displace
ment depends on its mass; the smaller the impurity 
mass the larger its displacement. This quantity, then, 
is different for the various isotopes. Because of the 
electron-phonon interaction the energy levels of the 
ion, and hence, the frequencies, shift by an amount 
which depends on this mean-square displacement. The 
lines from the various isotopes, then, are shifted relative 
to each other. We calculate this isotope shift for the R 
lines of chromium in ruby and MgO. 

We first derive an expression for the line shift due to 
the electron-phonon interaction. This consists of two 
parts. One is the line shift due to the thermal vibrations, 
that is, the vibrations which occur in addition to the 
zero-point vibrations and which vanish at absolute 
zero. This is the formula of McCumber and Sturge.1 

The second part is the shift due to the zero-point 
vibrations which is the only contribution at absolute 
zero. 

On the basis of a simple model we derive an expression 
giving the dependence of the line shift on the mass of 
the impurity ion. This leads to an expression for the 
isotope shift. 

Lattice vibrations also contribute to line broadening 
by a Raman process of phonon scattering.1 This may 
obscure the isotope shift at finite temperatures. The 

FIG. 2. Outline of the R line of MgO :Cr3+ showing its analysis 
into individual isotope components. 
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zero-point vibrations cannot contribute to this broad
ening mechanism, although they can cause a line shift, 
and hence, an isotope shift. We look for this isotope 
shift, then, at extremely low temperatures where the 
linewidth is smallest, and is caused only by the strains 
in the crystal. The line-shift situation at absolute zero is 
schematically represented on Fig. 3. The dashed line 
shows the position of all the isotope lines if zero-point 
vibrations did not exist. The zero-point vibrations, 
however, cause a shift which varies from isotope to 
isotope and this is represented on the figure. 

A. Line Shift Due to Lattice Vibrations 

We describe1-3'13 the interaction between the impurity 
ion and the perturbed lattice by 

Cr' 52 

W = Ce+De2, (1) 

where C and D are linear and quadratic coupling param
eters, respectively, and are functions of the lattice and 
electron coordinates, e is the strain at the impurity, and 
we define it by 

e=8u/dj (2) 

where 8u is the relative displacement of the ion from its 
equilibrium position between its neighbors, d is the 
interion distance. In reality, e is a tensor of rank 2, and 
C and D are tensors of rank 2 and 4, respectively. 
However, to simplify calculations average values are 
understood and these quantities are expressed as 
scalars. 

We restrict our considerations to the transition 
between the 2E and AA2 levels of Cr3+ in ruby and MgO. 
The M2 ground state is affected to a much smaller 
degree by the strains,14 and we will only consider the 
effect of 3C' on the 2E level. 

Under a static pressure, which introduces a small 
strain, the line shifts linearly with pressure and we get 
a static value for the linear parameter C, at the 2E level. 
The values of this parameter for the R lines of ruby 
and MgOiCr3* are almost identical. 

When the strains are caused by lattice vibrations we 
also expect a line shift because of the interaction. We use 
the following expression for e: 

:du/dx | (3) 

where u is the amplitude of the lattice vibration. The 
energy shift due to the vibrations is calculated in the 
Appendix. Shifts cannot arise in first order from the 
term linear in e. Shifts do come from the quadratic term 
in first order and from the linear term in second order. 
We find that the frequency shift may be written as the 
sum of two terms. 

Aco=Aco(0)+Aw(r)3 (4) 
13 R. J. Adler, Bull. Am. Phys. Soc. 7, 600 (1962). 
14 A. L. Schawlow, A. H. Piksis, and S. Sugano, Phys. Rev. 122, 

1469 (1961). 
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FIG. 3. Schematic representation of the shift due to the zero-point 
vibrations of the R lines of the individual chromium isotopes. 

where 

Aco(0) = -
i \{2E\c\m)\2 i 

k 2Mv2 

'-[(2E\D\ 

h 

!£>+L 

k 2Mn2 

\?E\C\J)\>-\ 

W(2E)-W(j)l 
k (5) 

is the shift due to the zero-point vibrations, and 

A"(r)=-z-
I 

k 2Mv2L 
(2E\D\*E)+2Z 

\(*E\C\j)\2-

W(*E)-W(f). 

X2m< ( ) (6) 

is the shift due to the thermal vibrations.1 In Eqs. (5) 
and (6), k denotes available vibrational modes, M 
denotes the mass of the crystal, v is the average phonon 
velocity, and \j denotes energy levels other than 2E. 

If we assume that the matrix elements above are 
independent of frequency, we expect, from Eq. (6), a 
shift Aco(T) proportional to the total heat content of 
the crystal. That this is experimentally found justifies 
this assumption to some extent.1-3 Inserting the static 
value of the linear coupling parameter instead of 
(2E\C\j) in Eq. (6) we find that this linear parameter 
term is much too small to account satisfactorily for 
the experimental shift with temperature. We con
clude that the D terms dominate in Eqs. (5) and (6) 
and these expressions reduce to 

1 0)k 

Aw(0)= (2E\D\2E) E - (7) 
Mv2 k 2 

a n d 

1 COfc 

Aco(r)= {2E\D\2E)T. . (8) 
Mv2 k exp(ftw/fer)-l 

If we reason in a purely classical manner, from Eqs. 
(1) and (2), we expect that in first order the terms 
linear in e will average out due to the periodic nature of 
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the vibrations, and the shift becomes 

D D (8u2) 

* h d2 

that is, it is proportional to the mean-square strain or 
the mean-square relative displacement. This is pre
cisely what our quantum-mechanical calculations have 
indicated. Aco in Eqs. (7) and (8) can be written 

D D (du2)o 
Aa>(0) = -(e2)^ , (70 

h h d2 

and similarly, we get 

D D (5u2)T 

M D = -V>r= —, (80 
h h d2 

where (e2)o and (e2)r are quantum mechanical expres
sions for the strain due to the zero-point vibrations and 
to the thermal phonons, respectively. Now, if {8u2)T/d2 

or (e2)T is calculated on the basis of a Debye model for 
ruby, with an effective Debye temperature of 760°K, 
then Eq. (8') is in excellent agreement with theory.1 A 
similar result is obtained for MgO:Cr8+ if an effective 
Debye temperature of around 700°K is used.3 Combin
ing Eqs. (7') and (8'), we have 

Aco(O) = Aco(T)((62)o/<€2)20. (10) 
At T= 100°K, the thermal shifts, Aco(T), found experi
mentally for the R lines of ruby and MgO:Cr3+ are 
—0.7 and —0.9 cm"-1, respectively.1,3 (€2)r=ioo is calcu
lated on the basis of the Debye model, and (e2)o, the 
strain due to the zero-point vibrations, is calculated with 
the same model. From these quantities we can evaluate 
Aco(0). A zero-point shift of —45 cm-1 is obtained for 
the R line of MgO rCr3*, with an almost identical value 
for ruby. 

B. Vibrations of an Impurity Ion in a 
Host Lattice 

We must now consider how the impurity ion vibrates 
in the host lattice. In general, the modes of vibration are 
modified and these modifications are greatest in the 
vicinity of the impurity. This is not a simple problem to 
treat. Numerical calculations of the mean-square dis
placement of the impurity ion have been carried out by 
a number of investigators.9'15 It appears that this dis
placement is not very dependent on the properties of 
the host lattice. 

Of particular relevance is the calculation of Lipkin.16 

He showed that, at zero temperature, the mean-square 

15 P. G. Dawber and R. J. Elliott, Proc. Roy. Soc. (London) 
A273, 222 (1963). 

" H. J. Lipkin, Ann. Phys. (N. Y.) 23, 28 (1963). 

displacement (u'2)o of an impurity ion of mass m' in a 
crystal whose regular ions have mass m, is given to a 
very good approximation by the mean-square displace
ment of the ion of mass w! in the "equivalent heavy 
lattice." By "equivalent heavy lattice" is meant a 
lattice identical with the original in every way except 
that all the ions have mass m!. 

We wish to calculate the ratio (u'2)o/(u2)oj where 
(u2)o is the zero-temperature mean-square displacement 
of the regular ions of mass m in the host crystal away 
from the impurity, and (u'2)o is the mean-square dis
placement of the impurity ion in this crystal. We 
calculate (u2)o by assuming that the vibrations of the 
regular ion are unaffected by the impurity, and we 
calculate (u'2)o by considering the "equivalent heavy 
crystal." 

At zero temperature, the zero-point vibration occurs 
in every mode of the original crystal and of the equival
ent heavy crystal. The same modes in k space are 
available for both crystals, but their frequencies are 
different. For the same k value the frequencies are in the 
ratio of the inverse square root of the masses, i.e., 

co//co*=(m/m')1/2. (11) 

The displacement of m due to the zero-point vibra
tion in the kth mode is 

«o(k)= {h/Nmuk)
li2 sin(k-x-«0 , (12) 

hence 

(u2(k))Q=h/2Nmcok. (13) 

Similarly, for the ion of mass m' in the second crystal 
(w'2(k))0= h/2Nmfo)k, where N is the number of ions in 
both crystals. 
For every allowed value of k we have 

(uf2(k))o mo)k /m\112 

(u2(k))o~<wWk~\ni') 

Summing over all k values gives 

(uf2)o/(u2)o= (m/m')1'*. (14) 

The detailed calculations of Dawber and Elliott15 

for an impurity ion in a simple cubic crystal confirms 
that this result is a very good approximation. 

For chromium in ruby and MgO, we will assume that 
this mass dependence is obeyed although we no longer 
have the simple case of an impurity in a^monatomic 
lattice. We will take the ratio of m/m'=§.17 

17 For MgO the masses are 24 (Mg) and 16 (O). The most 
abundant chromium iostope has a mass of 52. A mass ratio of 
m/mr = i- is then an appropriate value to adopt for MgO:Cr3+. 
For AI2O3 the masses are 27 (Al) and 16 (O) so that the average 
mass is again around 20. The same mass ratio then seems ap
propriate for ruby. 
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C. Dependence of Zero-Temperature Shift 
on Impurity Mass 

The quantity we are concerned with is the mean-
square relative displacement: (8u2)o. The optical 
phonons are much more effective than the acoustical 
phonons, and we adopt the following expression for 
(8U2)Q. (See the simple linear model in Fig. 4.) 

<W>o=a[<^>o+<tf>o], (15) 

where vl is the displacement of the chromium ion and 
u is the displacement of the neighboring host ion which 
is assumed for simplicity to have its unperturbed value. 
a is a factor of proportionality. 

We can express Eq. (7') as 

Aa>(0)=(3[((u'2)+(u2))/d2']= — (ifi)Zl+(m/m'yi*]. 
d2 

This is the expression we need, it tells us how the zero-
temperature shift varies with the mass m' of the 
impurity. I t is represented schematically in Fig. 3. /3 is a 
factor of proportionality. For a small change in m\ the 
shift is nearly linearly proportional to the change in m\ 
When m increases by unit mass, Aco(O) varies as 

6[Aco(0)]=-
Aco(0)r (m/tn'yi2 

2mf Ll+(m/mf) 

viz - i 

m/*J" (17) 

The heavier the isotope the less its displacement and, 
consequently, the less is its zero-temperature shift. This 
is indicated in Eq. (17). For chromium in ruby and in 
MgO, we have m / m ' = f and Aco(0)= —45 cm"1. Insert
ing these values in Eq. (17), we calculate an isotope 
shift of 0.18 cm--1 per unit mass. The experimentally 
determined values are 0.13 cm - 1 for ruby and 0.17 cm"1 

for MgO. 
In applying the above arguments to the R line of 

MgO :Cr3+ we have neglected to take into account the 
change in force constant. This change is due to the 
chromium ion having a positive charge of three units 
while the ion it replaces has a charge of two units. The 
closeness of the experimental shifts for ruby and 
MgO iCr3* indicates that this change in force constant 

M 

u 
L'J 

o -o-
M 

<8u*>o . a [<u":>o+ <u*>o] 

FIG. 4. Simple linear model used to derive the expression for the 
mean-square relative displacement of the impurity ion. 

does not seem to alter materially the mass dependence, 
Eq. (14), used in the calculations. 

CONCLUSION 

In spite of the simplifying assumptions made in 
estimating the isotope shift, there is close agreement 
between experimental and calculated values. We con
clude that the mass dependence in the amplitude of the 
impurity ion is capable of explaining the observed 
shifts. This experiment can be further thought of as a 
test of the "equivalent heavy lattice" model for calcu
lating the mean-square amplitude of vibration summed 
over all frequencies for an impurity ion in a monatomic 
lattice. This does not in itself imply anything about the 
spectrum of the impurity vibrations. The analogy 
between the interaction of the ion with its vibrational 
state and the interaction of the electron with its own 
field is interesting and has been pointed out by Kiel.18 

In this respect, the origin of the isotope shift is a process 
parallel to that which produces the Lamb shift in atoms 
and ions. 
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APPENDIX 

We use perturbation theory to calculate the additional 
energy of the \2D,n) level due to the interaction 3C'. 
The quantum number n denotes the vibrational state of 
the lattice. Using a second quantized expression for the 
amplitude of lattice vibrations u,19 we find from Eq. 
(3) that 

/ »«* \1 / 2 

e = E ( — — ; ) (ak-ak1"), (Al) 

where a^ and #k are phonon creation and destruction 
operators, respectively. M is the mass of the crystal, k 
denotes the vibrational mode, and v is the average 
phonon velocity. 

Introducing Eq. (Al) into Eq. (1), we find that the 
term containing C is linear in a* and #k+, and can only 
contribute in second order. The term containing D can 
contribute in first order. The only nonzero contributions 
come from combinations of the type a^a^ and a^a^ 

18 A. Kiel, Phys. Rev. 126, 1292 (1962). 
19 C. Kittel, Quantum Theory of Solids (John Wiley & Sons, 

Inc., New York, 1963), Eq. (33), Chap. 2. 
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The expression obtained for the energy shift is 

\<*E\C\j)\* K^ 
AW=-Z 

k.y W{m)-W{j)+hwk 2Mv* 

| (2£|C|i>|2 hot 

(w |a k ak t | « ) 

k.y W(m)-W(j)-hook 2M& 

hoik 
£ (2E\D\m) (n\akW+i\n), 
k Jf!)2 

(n\ak^ak\n) 

(A2) 

In Eq. (A2) j denotes all available electronic levels 
including the 2E level. 

Wheny denotes the 2E level the contribution from the 
first two terms of Eq. (A2) becomes 

|<2£|C|2£>|2 

k 2M?;2 

| < 2 £ | C | 2 £ ) | 2 

= - E j L ± - ^ L - (A3) 
k 2Mv2 

Whenj denotes levels other than 2E, then for the case 
of chromium in MgO, we can assume that \W(2E) 
— W(j)\^>fto)k, and the contribution from the first two 
terms of Eq. (A2) becomes 

\(2E\C\j)\2 fco* 
- £ £ ' (n\aSak+i\n). (A4) 

k j W(2E)-W(i)Mv2 

The prime in the j summation means that the^^lE in 
the summation. 

In the case of ruby the 2E level is split into two com
ponents whose separation is 29 cm"1. In calculating the 
shift of any one of these two levels using Eq. (A2), the 
summation over j levels will have to include the other 
level 29 cm-1 away. This is within the range of phonon 
energies and resonant denominators will occur in the 
first two terms. For ruby, McCumber and Sturge1 found 
that this contribution to AW is finite but negligible in 

comparison with the remainder of the expression. We 
assume that all other levels are sufficiently far away so 
that \W(2E)-W(j)\?>fiGok. The line-shift calculations 
for ruby and MgO iCr34" are then identical. In both cases 
the energy shift of the \2E,n> level is 

AW=-Y, 
k 

|<2E|C|2£)|2 

+ E' 

2Mv2 

\(>E\C\j)\2 -j/kok 

W(2E)-W(j)JMv2 

Z[(2E\D\2E) 

(n\ak^ak+^\n). (A5) 

In this expression #k+#k is the number operator, giving 
the number of thermal phonons, n(k), in the kth mode: 

n(k) = 
1 

exp(hojk/kT)~ 1 

The part of Eq. (A5) containing a^a^ gives a tempera
ture-dependent energy shift AW(T), which vanishes 
when r=0°K. The remaining part of Eq. (A5) is the 
contribution of the zero-point vibrations to the energy 
shift AW(0). These two contributions are 

|(2E|C|2E)|2 

APr«»=-E - - E 
k 2Mv2 i 

(2E\D\2E) 

hook | \(2E\C\j)\> 

i W(2E)-W(j)j2Mv2' 
(A6) 

and 

AW(T)=- r<2E|£>|2£> 

| \mc\j)\2i h 

i W(2E)~W(j) 

Ujc 

Mv2exp(fuck/kT)-l 
(A7) 

These lead directly to Eqs. (5) and (6) for the zero-
point and temperature-dependent frequency shifts. 


